y

]”.

ol MRS

COC 0 O L R

__—

UnlverS|ty ‘of YoJk, York, UK _— . |

mdahge, Zaman La%t;a/;.:-;:-E 3
/Umver5|ty of WarW|ck Covrent/ ry, U

. i

,/’,“',‘,

—1 7 A S =, 4

=

T\Y\T\mﬁ

— APPROACHES TO DEVF OF
— SCIENTIFIC SOFTWAR .

,Sm erght Chrstor.%é’ﬁldg srs [7;555;3;:

— .

Wlams, ndrew SmEd/and Sue Thorne

/Hartree Centre, TFC Dare?bury Laboratory, Warrington, UK

Met Office

L i S S e

/-éiw'ﬁwﬁuwﬂ:’w%\ ‘

R

/

UK Researc
and Innovation

el

LAy =

Ve Ay F SN

rov—

\ - - - - - -

B PE——
fa - T -
1 - 5y

e

(Y Wy ke

Py ok Gt A Slal WSy

D)
AT TN\ S R N

LY

h

%/l

N

T

L
[

[

/

=r e
= =3 =
= \

UK Atomic

Energy
Authority

Context
Project NEPTUNE (NEutrals & Plasma TUrbulence Numerics for the Exascale)

, magnetic flux surfaces

separatrix (LCFS)

* Fusion Modelling System use case of EXCALIBUR

' edge regiog \‘\\
» Develop software to make efficient use of current j Nl
Petascale and future Exascale hardware

 In order to draw insights from ITER | plasmacore / W

* to guide and optimise the design of the UK ,
demonstration nuclear fusion power plant STEP \

* Initial focus on the edge and divertor regions © 8
/p'ivate ﬂlil)(\ A"et:;aeltd;;laet;o

« Our work is on investigating approaches to
developing a performance portable code i |

xC =
e

separatnx (LCFS)
X-point

/,
// m
baffle

Challenges in Developing Modern Parallel Applications
Pre- and Post-Exascale Hardware

« All pre- and post-Exascale systems will be
(or are) heterogenous (... except Fugaku)

« Most of the FLOP/s will be provided by GPU
accelerators

* NVIDIA Hopper
« AMD Instinct
* Intel Xe

* Most systems will use x86_64 hosts from
Intel and AMD

(+ perhaps some NVIDIA Grace)

Challenges in Developing Modern Parallel Applications

Developing Applications for Exascale
~ . (SYCLW_,
» kokkos ~—

 How do we achieve Performance, | ’/
Portability, and Productivity on clone . RAJV

Exascale systems? @v flredrake D)

« MPI+X likely for Exascale systems
« MPI for inter-node AMDZ1
« X for intra-node and accelerators

oneAPI

a “'. ‘%‘?\‘\\\
«+ OpenkFPM (‘M'.{II/OP—DSL &
o 7"
julia ox =PETSc OpenCL
Z preCICE n‘ggm ExaStencils OpenACC "Cﬂﬁg‘"‘g

Challenges in Developing Modern Parallel Applications

Application(s)

Coupling Frameworks

High-level Domain Specific Languages (e.g. UFL, Bout++) ° ReVi ew h as fO cuss ed on

Languages

Domain
Specific

Low-level Domain Specific Languages (e.g. OPS, OP2) o Prog ramm | n g Ian g u ag es

Parallel programming models
Math Libraries (e.g. BLAS, MKL), Partitioners (e.g. ParMETIS, Scotch)

Software libraries

Software
Libraries

C++ Template Libraries (e.g. Kokkos) Communication Libraries (e.g. MPI)

Domain specific languages

Threading Frameworks (e.g. OpenMP) Accelerator Extensions (e.g. OpenACC) CO u p I In g fram ewor kS

Parallel
Programming
Models

SYCL / DPC++ GPU Extensions (e.g. CUDA, HIP) * ASS essment Of 3 PS

General Purpose Programming Languages (e.g. C, C++, Fortran)

Other Accelerators — XCW R e

o 2
7]
@ <)
£ £
.E []
S5 o
»n "
[[7}]
..2 2
o 2
o 3]
3 =
S £
)
& 2
3 —
o o
7} 35
£ b
© =
£ =
(] O
'U | .
> ©
et @
o | =
s (<]
=

General Purpose Programming Languages
Traditional programming languages with established history in scientific computing

« Fortran and C/C++ dominate HPC

« Fortran codes account >50% ARCHER2 time, C/C++ >30%
« Python not traditionally “HPC”, but often a glue language
« Julia promising with some “best-in-class” libraries

Considerations:

 Languages very prescriptive, optimisation may reduce portability and
maintainability

« Multiple code paths may be required, duplicating development and
maintenance

« Parallelism typically explicit, significantly increasing complexity

Parallel Programming Models
Extensions providing parallelism on- and off-node, or to accelerators

Loop-level parallelism often achieved with OpenMP

MPI is de facto standard for distributed memory parallelism
ves i 2 (SyCL
» Alternatives include Co-array Fortran, UPC ROEm

Task-level parallelism available in OpenMP, or Charm++, LEGION, etc.

OpenAcC OpenMP

Extensions targeting accelerators

« CUDA, ROCm/HIP, SYCL/DPC++, OpenCL, OpenACC, OCCA 1
UL .
oneAPI
Considerations:
PR

 Open standards sometimes lag hardware development

OpenCL nviDiA

« Complete implementations of standards sometimes slow CUDA

xC =
o

 Low-level control over parallelism may lead to code specialisation

Software Libraries
Scientific and mathematical libraries, and libraries that facilitate data- and task-parallelism

« Mathematical libraries provide common mathematical routines
 Most based on BLAS, LAPACK, FETW, optimised by vendors (e.g. MKL)

« Data libraries provide partitioning, data structures t ’; : i 2 "<(
« Common examples include PETSc, METIS, Scotch t ,: : I: :E KK

« C++template libraries as parallel programming models L A-P-ACEK
L -A-P A C K

« Kokkos, RAJA, Thrust

=PETSc

Considerations:

| o4
« Standard interfaces restrict use, but encourages vendor optimisation ha k O k k OS
« Library functions often work in lock-step, restricting fusing of operations
« Template libraries restrict use to modern C++ RAJV

Templates can increase compilation time and obfuscate errors
But, platform specific code can be easily integrated into templated code

xC =
"o

Domain Specific Languages
Languages and libraries limited to a particular application or algorithmic domain

« Sacrificing generality perhaps makes it feasible to achieve all 3 Ps //
« Low-level DSLs focus on parallel computation patterns clone' =
 Mesh-based DSLs: Halide, YASK, OP-DSLs, PSyclone
. Particle-based DSLs: PPML, PPME, OpenFPM, PPMD & Firedrake
« High-level DSLs focus on specific numerical methods
. Finit_e diffgrences, finite volur_ne, finite element: WE“\IOP—DSL &&
FENICS, Firedrake, ExaStencils, Bout++ ¥
Considerations: %X@Sten(ﬁﬂ@
« Debugging may be more difficult because of hidden layers ®
- Extensibility and customisability requires additional expertise : OpenFPM

« There may be escape hatches, but this breaks the abstraction

xC =
"o

Coupling Frameworks
Libraries acting as interfaces to enable communication between applications

« Multiscale problems require different models that can interact
(e.g. fluid and particle models)

« Typically flexible and lightweight Q preC|CE
« Minimal effect on performance and portability |

« Examples include preCICE, CWIPI, MUI

Considerations:

T
I
c
-
0
0

« Performance of communication and coupling numerics
« Ease of use (and minimal intrusion)

Evaluating Performance, Portability and Productivity
Metrics and heuristics for measuring the 3 Ps

* Performance typically measured by metrics or proxies for “time-to-science”
 Runtime, FLOP/s, Memory bandwidth, Energy, etc.
« Roofline model [1] helps us reason about performance compared to potential

128
64

32

Peak floating-point performance

« eam\ / /=Ioaling-point balance
g
RS

—_
[=2]

Attainable GFLOP/s
oo

|\
oﬂba“d\:‘\ ILP or SIMD
4 me(“ g W
?e,a“ A R
2 Y|
© oo
e = e® TLP only
1 2
02
o
1/2 "
1/8 1/4 1/2 1 2 4 8 16

Operational Intensity (FLOP/s/Byte) XCWR
[1] S. Williams, A. Waterman, D. Patterson, Roofline: An Insightful Visual Performance Model for Multicore Architectures, Commun. ACM 52 (2009) 65-76. @

Evaluating Performance, Portability and Productivity

Metrics and heuristics for measuring the 3 Ps

» Although portability is a binary measure, we
care about portable performance
: : o o -
 One such metric and visual heuristic from
Pennycook et al. [2] and Sewall et al. [3]
0.0 Hmm “—- 0.0
(] if i is supported Vi € H BLELF B : :::jgcll::t?':::et
Z 1 E g o 2 g - Multi:Target
Pla,p. H) =1 Liea,p) IEEC Consistent (70%)
\ 0 otherwise 1234567 8 910 = towmen
Platform
B2 Dbo [W
Be e H+ W)
g c F

[2] S.J. Pennycook, J.D. Sewall, and V.W. Lee. Implications of a metric for performance portability. Future Generation Computer Systems, 92:947 —958, 2019.
[3] J.D. Sewall, S.J. Pennycook, D. Jacobsen, T. Deakin, and S. McIntosh-Smith. Interpreting and visualizing performance portability metrics. In 2020 P3HPC
Workshop, pages 14-24, 2020.

Evaluating Performance, Portability and Productivity
Metrics and heuristics for measuring the 3 Ps

 Developer productivity is perhaps the most difficult st

to assess objectively i
* Proxies: LoC, Dev time, Code complexity :
« Harrell et al. [4] propose Code Divergence LT
£ A
H -1 20.4—
CD(aspsH) = (|2|) Z di,j(aap) E %
{i,jleHxH S o g
&
|C;‘(a, p) N Cj(a, p)l ob | Unportable.
d;’ i\d, =1- Lo.o 02 0.4 0.6 0.8 Lo
,J(a P) |Ci(a, p) U Cj(a, P)l Code Convergence
« Can be combined with Performance Portability on a - ——

—— Portability Framework

Navigation Chart [5] < pecaine

[4] S. L. Harrell, J. Kitson, R. Bird, S. J. Pennycook, J. Sewall, D. Jacobsen, D. N. Asanza, A. Hsu, H. C. Carrillo, H. Kim, R. Robey, Effective performance XC R
portability, in: 2018 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC), 2018, pp. 24—-36
[5] S. J. Pennycook, J. D. Sewall, D. W. Jacobsen, T. Deakin, S. McIntosh-Smith, Navigating Performance, Portability, and Productivity, Computing in Science &

Engineering 23 (2021) 28-38

Summary

 New simulation software likely to employ software and DSLs at many different
levels of software development stack

* High-level DSLs for users to express equations directly
« Low-level DSLs and programming models targeting different architectures

e Targeting high performance, portability and productivity from a single code
base is challenging!

 There are a number of metrics, tools and visual heuristics to guide developers
and measure success

xC =
e

y

]”.

I AL A\ QA A

B PE—— B = = s =
fa - T - B
I s e

b g

() T [e Sy
Nl |

LTy

e

LY

— APPROACHES TO DEVF (o

T

4 [/(j 1Ml
[

R

SCIENTIFIC SOFTWARE ~in | N
,Sm erght Chrstop;é’ﬁldg :rs E:j = TR

__—

/

UnlverS|ty of YoJk, York, UK = .o

/

Vi

L i S S e

mdahge, Zaman La%ua/;.:-;:-E 3
/Umver5|ty of WarW|ck Cowyent/ ry, U

/

i

vy

REW % T W)y)

/. ;.f;: ‘f

’ \ ,“--‘_l
Wlams, ndrewSu d/and SueThorne

/Hartree Centrve, SETFC Dare?bury Laboratory, Warrington, UK b
S UK Research
and Innovation

oLl fubl.
Ve Ay F SN
- -
LT LA | LT

&/

UK Atomic
Energy
Authority

Met Office

	Slide 1: Approaches to Developing Performance Portable Scientific Software
	Slide 2: Context
	Slide 3: Challenges in Developing Modern Parallel Applications
	Slide 4: Challenges in Developing Modern Parallel Applications
	Slide 5
	Slide 6: General Purpose Programming Languages
	Slide 7: Parallel Programming Models
	Slide 8: Software Libraries
	Slide 9: Domain Specific Languages
	Slide 10: Coupling Frameworks
	Slide 11: Evaluating Performance, Portability and Productivity
	Slide 12: Evaluating Performance, Portability and Productivity
	Slide 13: Evaluating Performance, Portability and Productivity
	Slide 14: Summary
	Slide 15: Approaches to Developing Performance Portable Scientific Software

