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Project NEPTUNE (NEutrals & Plasma TUrbulence Numerics for the Exascale)

• Fusion Modelling System use case of ExCALIBUR

• Develop software to make efficient use of current 
Petascale and future Exascale hardware 

• in order to draw insights from ITER 

• to guide and optimise the design of the UK 
demonstration nuclear fusion power plant STEP

• Initial focus on the edge and divertor regions

• Our work is on investigating approaches to 
developing a performance portable code
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Context



Challenges in Developing Modern Parallel Applications
Pre- and Post-Exascale Hardware
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• All pre- and post-Exascale systems will be 
(or are) heterogenous (… except Fugaku)

• Most of the FLOP/s will be provided by GPU 
accelerators

• NVIDIA Hopper

• AMD Instinct

• Intel Xe

• Most systems will use x86_64 hosts from 
Intel and AMD 
(+ perhaps some NVIDIA Grace)



Challenges in Developing Modern Parallel Applications
Developing Applications for Exascale

• How do we achieve Performance, 
Portability, and Productivity on 
Exascale systems?

• MPI+X likely for Exascale systems

• MPI for inter-node

• X for intra-node and accelerators
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Challenges in Developing Modern Parallel Applications

• Review has focussed on

• Programming languages

• Parallel programming models

• Software libraries

• Domain specific languages

• Coupling frameworks

• Assessment of 3Ps
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General Purpose Programming Languages
Traditional programming languages with established history in scientific computing

• Fortran and C/C++ dominate HPC

• Fortran codes account >50% ARCHER2 time, C/C++ >30%

• Python not traditionally “HPC”, but often a glue language

• Julia promising with some “best-in-class” libraries

Considerations: 

• Languages very prescriptive, optimisation may reduce portability and 
maintainability

• Multiple code paths may be required, duplicating development and 
maintenance

• Parallelism typically explicit, significantly increasing complexity
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Parallel Programming Models
Extensions providing parallelism on- and off-node, or to accelerators

• Loop-level parallelism often achieved with OpenMP

• MPI is de facto standard for distributed memory parallelism

• Alternatives include Co-array Fortran, UPC

• Task-level parallelism available in OpenMP, or Charm++, LEGION, etc.

• Extensions targeting accelerators 

• CUDA, ROCm/HIP, SYCL/DPC++, OpenCL, OpenACC, OCCA

Considerations:

• Open standards sometimes lag hardware development

• Complete implementations of standards sometimes slow

• Low-level control over parallelism may lead to code specialisation
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Software Libraries
Scientific and mathematical libraries, and libraries that facilitate data- and task-parallelism

• Mathematical libraries provide common mathematical routines

• Most based on BLAS, LAPACK, FFTW, optimised by vendors (e.g. MKL)

• Data libraries provide partitioning, data structures

• Common examples include PETSc, METIS, Scotch

• C++ template libraries as parallel programming models

• Kokkos, RAJA, Thrust

Considerations:

• Standard interfaces restrict use, but encourages vendor optimisation

• Library functions often work in lock-step, restricting fusing of operations

• Template libraries restrict use to modern C++

• Templates can increase compilation time and obfuscate errors

• But, platform specific code can be easily integrated into templated code

8



Domain Specific Languages
Languages and libraries limited to a particular application or algorithmic domain

• Sacrificing generality perhaps makes it feasible to achieve all 3 Ps

• Low-level DSLs focus on parallel computation patterns

• Mesh-based DSLs: Halide, YASK, OP-DSLs, PSyclone

• Particle-based DSLs: PPML, PPME, OpenFPM, PPMD

• High-level DSLs focus on specific numerical methods

• Finite differences, finite volume, finite element: 
FEniCS, Firedrake, ExaStencils, Bout++

Considerations:

• Debugging may be more difficult because of hidden layers

• Extensibility and customisability requires additional expertise

• There may be escape hatches, but this breaks the abstraction
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Coupling Frameworks
Libraries acting as interfaces to enable communication between applications

• Multiscale problems require different models that can interact 
(e.g. fluid and particle models)

• Typically flexible and lightweight

• Minimal effect on performance and portability

• Examples include preCICE, CWIPI, MUI

Considerations:

• Performance of communication and coupling numerics

• Ease of use (and minimal intrusion)
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Evaluating Performance, Portability and Productivity
Metrics and heuristics for measuring the 3 Ps

• Performance typically measured by metrics or proxies for “time-to-science”

• Runtime, FLOP/s, Memory bandwidth, Energy, etc.

• Roofline model [1] helps us reason about performance compared to potential
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Evaluating Performance, Portability and Productivity
Metrics and heuristics for measuring the 3 Ps

• Although portability is a binary measure, we 
care about portable performance

• One such metric and visual heuristic from 
Pennycook et al. [2] and Sewall et al. [3]
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Evaluating Performance, Portability and Productivity
Metrics and heuristics for measuring the 3 Ps

• Developer productivity is perhaps the most difficult 
to assess objectively

• Proxies: LoC, Dev time, Code complexity

• Harrell et al. [4] propose Code Divergence

• Can be combined with Performance Portability on a 
Navigation Chart [5]
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Summary

• New simulation software likely to employ software and DSLs at many different 
levels of software development stack

• High-level DSLs for users to express equations directly

• Low-level DSLs and programming models targeting different architectures

• Targeting high performance, portability and productivity from a single code 
base is challenging!

• There are a number of metrics, tools and visual heuristics to guide developers 
and measure success
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