
APPROACHES TO DEVELOPING PERFORMANCE PORTABLE
SCIENTIFIC SOFTWARE
Steven A. Wright, Christopher Ridgers

University of York, York, UK

Gihan Mudalige, Zaman Lantra

University of Warwick, Coventry, UK

Josh Williams, Andrew Sunderland, Sue Thorne

Hartree Centre, STFC Daresbury Laboratory, Warrington, UK

1



Project NEPTUNE (NEutrals & Plasma TUrbulence Numerics for the Exascale)

• Fusion Modelling System use case of ExCALIBUR

• Develop software to make efficient use of current 
Petascale and future Exascale hardware 

• in order to draw insights from ITER 

• to guide and optimise the design of the UK 
demonstration nuclear fusion power plant STEP

• Initial focus on the edge and divertor regions

• Our work is on investigating approaches to 
developing a performance portable code

2

Context



Challenges in Developing Modern Parallel Applications
Pre- and Post-Exascale Hardware

3

• All pre- and post-Exascale systems will be 
(or are) heterogenous (… except Fugaku)

• Most of the FLOP/s will be provided by GPU 
accelerators

• NVIDIA Hopper

• AMD Instinct

• Intel Xe

• Most systems will use x86_64 hosts from 
Intel and AMD 
(+ perhaps some NVIDIA Grace)



Challenges in Developing Modern Parallel Applications
Developing Applications for Exascale

• How do we achieve Performance, 
Portability, and Productivity on 
Exascale systems?

• MPI+X likely for Exascale systems

• MPI for inter-node

• X for intra-node and accelerators

4



Challenges in Developing Modern Parallel Applications

• Review has focussed on

• Programming languages

• Parallel programming models

• Software libraries

• Domain specific languages

• Coupling frameworks

• Assessment of 3Ps

5



General Purpose Programming Languages
Traditional programming languages with established history in scientific computing

• Fortran and C/C++ dominate HPC

• Fortran codes account >50% ARCHER2 time, C/C++ >30%

• Python not traditionally “HPC”, but often a glue language

• Julia promising with some “best-in-class” libraries

Considerations: 

• Languages very prescriptive, optimisation may reduce portability and 
maintainability

• Multiple code paths may be required, duplicating development and 
maintenance

• Parallelism typically explicit, significantly increasing complexity

6



Parallel Programming Models
Extensions providing parallelism on- and off-node, or to accelerators

• Loop-level parallelism often achieved with OpenMP

• MPI is de facto standard for distributed memory parallelism

• Alternatives include Co-array Fortran, UPC

• Task-level parallelism available in OpenMP, or Charm++, LEGION, etc.

• Extensions targeting accelerators 

• CUDA, ROCm/HIP, SYCL/DPC++, OpenCL, OpenACC, OCCA

Considerations:

• Open standards sometimes lag hardware development

• Complete implementations of standards sometimes slow

• Low-level control over parallelism may lead to code specialisation

7



Software Libraries
Scientific and mathematical libraries, and libraries that facilitate data- and task-parallelism

• Mathematical libraries provide common mathematical routines

• Most based on BLAS, LAPACK, FFTW, optimised by vendors (e.g. MKL)

• Data libraries provide partitioning, data structures

• Common examples include PETSc, METIS, Scotch

• C++ template libraries as parallel programming models

• Kokkos, RAJA, Thrust

Considerations:

• Standard interfaces restrict use, but encourages vendor optimisation

• Library functions often work in lock-step, restricting fusing of operations

• Template libraries restrict use to modern C++

• Templates can increase compilation time and obfuscate errors

• But, platform specific code can be easily integrated into templated code

8



Domain Specific Languages
Languages and libraries limited to a particular application or algorithmic domain

• Sacrificing generality perhaps makes it feasible to achieve all 3 Ps

• Low-level DSLs focus on parallel computation patterns

• Mesh-based DSLs: Halide, YASK, OP-DSLs, PSyclone

• Particle-based DSLs: PPML, PPME, OpenFPM, PPMD

• High-level DSLs focus on specific numerical methods

• Finite differences, finite volume, finite element: 
FEniCS, Firedrake, ExaStencils, Bout++

Considerations:

• Debugging may be more difficult because of hidden layers

• Extensibility and customisability requires additional expertise

• There may be escape hatches, but this breaks the abstraction

9



Coupling Frameworks
Libraries acting as interfaces to enable communication between applications

• Multiscale problems require different models that can interact 
(e.g. fluid and particle models)

• Typically flexible and lightweight

• Minimal effect on performance and portability

• Examples include preCICE, CWIPI, MUI

Considerations:

• Performance of communication and coupling numerics

• Ease of use (and minimal intrusion)

10



Evaluating Performance, Portability and Productivity
Metrics and heuristics for measuring the 3 Ps

• Performance typically measured by metrics or proxies for “time-to-science”

• Runtime, FLOP/s, Memory bandwidth, Energy, etc.

• Roofline model [1] helps us reason about performance compared to potential

11
[1] S. Williams, A. Waterman, D. Patterson, Roofline: An Insightful Visual Performance Model for Multicore Architectures, Commun. ACM 52 (2009) 65–76.



Evaluating Performance, Portability and Productivity
Metrics and heuristics for measuring the 3 Ps

• Although portability is a binary measure, we 
care about portable performance

• One such metric and visual heuristic from 
Pennycook et al. [2] and Sewall et al. [3]

12
[2] S.J. Pennycook, J.D. Sewall, and V.W. Lee. Implications of a metric for performance portability. Future Generation Computer Systems, 92:947 –958, 2019.

[3] J.D. Sewall, S.J. Pennycook, D. Jacobsen, T. Deakin, and S. McIntosh-Smith. Interpreting and visualizing performance portability metrics. In 2020 P3HPC 

Workshop, pages 14–24, 2020.



Evaluating Performance, Portability and Productivity
Metrics and heuristics for measuring the 3 Ps

• Developer productivity is perhaps the most difficult 
to assess objectively

• Proxies: LoC, Dev time, Code complexity

• Harrell et al. [4] propose Code Divergence

• Can be combined with Performance Portability on a 
Navigation Chart [5]

13
[4] S. L. Harrell, J. Kitson, R. Bird, S. J. Pennycook, J. Sewall, D. Jacobsen, D. N. Asanza, A. Hsu, H. C. Carrillo, H. Kim, R. Robey, Effective performance 

portability, in: 2018 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC), 2018, pp. 24–36

[5] S. J. Pennycook, J. D. Sewall, D. W. Jacobsen, T. Deakin, S. McIntosh-Smith, Navigating Performance, Portability, and Productivity, Computing in Science & 

Engineering 23 (2021) 28–38



Summary

• New simulation software likely to employ software and DSLs at many different 
levels of software development stack

• High-level DSLs for users to express equations directly

• Low-level DSLs and programming models targeting different architectures

• Targeting high performance, portability and productivity from a single code 
base is challenging!

• There are a number of metrics, tools and visual heuristics to guide developers 
and measure success



APPROACHES TO DEVELOPING PERFORMANCE PORTABLE
SCIENTIFIC SOFTWARE
Steven A. Wright, Christopher Ridgers

University of York, York, UK

Gihan Mudalige, Zaman Lantra

University of Warwick, Coventry, UK

Josh Williams, Andrew Sunderland, Sue Thorne

Hartree Centre, STFC Daresbury Laboratory, Warrington, UK

15


	Slide 1: Approaches to Developing Performance Portable Scientific Software
	Slide 2: Context
	Slide 3: Challenges in Developing Modern Parallel Applications
	Slide 4: Challenges in Developing Modern Parallel Applications
	Slide 5
	Slide 6: General Purpose Programming Languages
	Slide 7: Parallel Programming Models
	Slide 8: Software Libraries
	Slide 9: Domain Specific Languages
	Slide 10: Coupling Frameworks
	Slide 11: Evaluating Performance, Portability and Productivity
	Slide 12: Evaluating Performance, Portability and Productivity
	Slide 13: Evaluating Performance, Portability and Productivity
	Slide 14: Summary
	Slide 15: Approaches to Developing Performance Portable Scientific Software

