Excalisur

PROJECT NEPTUNE NESO: NEPTUNE EXPLORATORY SOFTWARE

. .

. .

James Cook (presenting this) Will Saunders (presenting next) + UKAEA team

ExCALIBUR Workshop, Bristol, 11 Oct 23.

UK Atomic Energy Authority

NESO: High level goals Neptune Exploratory SOftware

Bring together key technologies as foundational building blocks

- Nektar++ for its high-p DG/CG capabilities to solve generic PDEs
- NESO-Particles for SYCL-enabled charged and neutral particles
- NESO brings together Nektar++ and NESO-Particles to build mini-apps
 - An electrostatic PIC code
 - A mean field exhaust relevant system of equations
 - The turbulent reduced MHD Hasegawa-Wakatani equations
 - Capability in 2D and 3D!

The NESO Repositories

Software development

NESO Public C++ ☆ 4 화 MIT 양 3 ④ 49 (2 issues need help) 있 10 Updated 4 days ago	
NESO-Particles Public ● C++ ☆ 1 회 MIT ♀ 1 ⊙ 7 \$\$ 2 Updated 3 weeks ago	~~~~~~
NESO-fame Public Field Aligned Mesh Extrusion ● Python ☆ 1 季 GPL-3.0 ♀ 0 ⊙ 2 \$\$ 0 Updated 3 weeks ago	M
NESO-Spack Public Spack repository for installing NESO components and dependencies. Python 分 3 分 0 1 分 0 Updated on Jul 12	
NESO-UQ Public ● Python ☆ 0 ▲ MIT ♀ 0 ⊙ 0 ┆┆ 0 Updated on May 26	
NESO-Reactions Private ● Python ☆ 0 Ф MIT ♀ 0 ⊙ 3 ♀ 0 Updated on Feb 28	_/

Top level framework

Particles with MPI & GPUs

Field Aligned Mesh Extrusion – for Gridding along magnetic field lines.

Make NESO, Nektar++, NESO-Particles easier to build with SYCL

Nascent Uncertainty Quantification repo

Placeholder for neutral particle reactions code

NESO: Status Neptune Exploratory SOftware

- Prototype NEPTUNE code ٠
 - Fluid (with Nektar++) and/or particles (with NESO-Particles) •
 - Implemented in SYCL (both Intel oneAPI and hipSYCL) •

Figure 3: Evolution of the particle distribution (points) and electron density (coloured contours) in the coupled 2D-in-3D Hasegawa Wakatani solver. Particles are coloured according to their computational weight, corresponding to the number of physical neutrals that they represent. Captions under each panel indicate the simulation time.

http://en.wikipedia.org/wiki/Neso (moon)

http://github.com/ExCALIBUR-NEPTUNE/NESO

(b) t = 12.5

Figure 2: Evolution of the electron density in the fluid-only 2D-in-3D Hasegawa Wakatani solver.

3

ExCALIBUR-NEPTUNE

NEutrals & Plasma TUbulence Numerics for the Exascale

•Harness the code with a DSL for rapid physics exploration

- 1 ddt(rho) = -V_dot_Grad(v, rho) rho*Div(v);
- $ddt(p) = -V_dot_Grad(v, p) g*p*Div(v);$
- 3 ddt(v) = -V_dot_Grad(v, v) + (cross(Curl(B),B) Grad(p))/rho;
- 4 ddt(B) = Curl(cross(v,B));

• Unobtrusive UQ ("error bars") and surrogates ("fits" that are quick to evaluate) will render the code base actionable for engineering design.

• Leverage fundamental research at the forefront of science from advanced preconditioner methods, parallel-in-time and neural methods.

NESO-Spack

Building dependencies from scratch

Users are able to build nektar++ against:

- Intel's oneapiSYCL implementation
- AMD's hipsycl SYCL implementation
- particular compilers, e.g.
- gcc@11.2.0

```
• oneapi@2022.1.0 (i.e. dpcpp / icpx)
```

- python for NekPy
- your choice of MPI e.g. mpich

One can make a module file; module load neso-hipsycl

will-saunders-ukaea rebrand of spa	ck repo from wrs -> neso	84f9469 20 hours ago	30 commits	
packages	rebrand of spack repo from wrs -> neso		20 hours ago	
🗅 .gitignore	tiny readme (+ gitignore)		3 months ago	
README.md	rebrand of spack repo from wrs -> neso		20 hours ago	
repo.yaml	rebrand of spack repo from wrs -> neso		20 hours ago	
NESO-Spack				
NESO-Spack				
To enable your installation of spack to use this repo do:				
	to use this reporto.			
git clone git@github.com:ExC cd NESO-spack spack repo add .	ALIBUR-NEPTUNE/NESO-spack.git			

```
spack install --keep-stage -j 4 neso.nektar@5.2.0-f1598d ^python ^mpich %gcc@11.2.0
spack install --keep-stage -j 4 neso.hipsycl@0.9.2 %gcc@11.2.0
```

spack install --keep-stage -j 4 neso.nektar@5.2.0-f1598d +mkl %oneapi@2022.1.0 ^inteloneapi-mpi %oneapi@2022.1.0 ^intel-oneapi-mkl %oneapi@2022.1.0 ^python

FIN

UKAEA NEPTUNE:

Rob Akers Wayne Arter Matthew Barton James Cook Joseph Parker Owen Parry Will Saunders Ed Threlfall

The support of the UK Meteorological Office and Strategic Priorities Fund is acknowledged.

ExCALIBUR-NEPTUNE

NEutrals & Plasma TUbulence Numerics for the Exascale

•Fusion reactors are a strongly coupled, multi-physics system of systems problem - The plasma itself requires several different models to accommodate enormous range in time- and lengthscales.

•One such problem is the **coupling** of plasma to the first wall, which requires **3 velocity components** of the plasma to be represented near the wall (hence > billions of particles).

•NEPTUNE and its satellite repositories together comprise a highly scalable, arithmetically complex, performance portable next gen code, based on **Nektar++** and **SYCL**.

