Quantum Enhanced Verified Exascale Computing

collaboration:

- ★ Strathclyde
- ★ Durham
- ★ London Southbank
- ★ Warwick

funders and partners:

★ ExCALIBUR Cross-Cutting project:

https://excalibur.ac.uk/projects/qevec/

potential disruptor: quantum computing

current – NISQ* era – quantum computers need near exascale classical to verify

 \Rightarrow challenge is to make this potential useful \Leftarrow

[*NISQ = noisy intermediate-scale quantum]

⇒ two use cases: fluids sim and materials sim systematic evaluation, identification, and development of relevant quantum algorithms for exascale subroutines

 \Rightarrow quantum VVUQ

 \Rightarrow methodology to apply to other use cases

Quantum Enhanced Verified Exascale Computing

★ Strathclyde:

Viv Kendon (PI)

★ Durham:

Alastair Basden, Stewart Clark, Nicholas Chancellor, Halim Kusumaatmaja

★ London Southbank:

John Buckeridge (KE) ★ UCL: Scott Woodley, Richard Catlow, Paul Warburton ★ Warwick: Animesh Datta

★ Manchester Steve Lind

\star who we are \star

- RSEs/PDRAs in:
 - quantum verification (Warwick Theo Kapourniotis \rightarrow NQCC)
 - quantum computing (Strathclyde Rhonda Au-Yeung and Steph Foulds)
 - fluids simulations (Durham Omer Rathore)
 - materials simulations (UCL Bruno Camino)
- related PhDs in:
 - quantum simulations of plasma (Warwick)
 - hybrid quantum algorithms (Strathclyde – Lara Janiurek)
 - Accreditation and partition functions
 (Warwick Andrew Jackson)

June 2023: QuANDiE funded! (Quantum Algorithms for Nonlinear Differential Equations) *Software for Quantum Computation call* funded through March 2025

QEVEC results so far:

- tutorial paper on using D-Wave for solid solutions:
 Quantum computing and materials science: A practical guide to applying quantum annealing to the configurational analysis of materials
 Bruno Camino, JB, PW, VK, SW, J. Appl. Phys. 133, 221102 (2023)
- quantum algorithm for core of SPH tested in 1D simulation: *Quantum algorithm for smoothed particle hydrodynamics* Rhonda Au Yeung, AW, VK, SL, Comp. Phys. Commun., 294, 108909 (2024)
- accreditation methods for quantum annealing and simulation Accreditation of Analogue Quantum Simulators Andrew Jackson, Theo Kapourniotis, AD, arXiv:2306.03060
- better classical algorithms: Partition-function estimation: Quantum and quantum-inspired algorithms, Andrew Jackson, Theo Kapourniotis, AD, PRA 107, 012421 (2023)

Quantum Enhanced Verified Exascale Computing

QEVEC work in progress:

in preparation:

- using D-Wave to optimise task scheduling Omer Rathore, AB, NC
- (invited) review for Reports on Progress in Physics *Rhonda Au Yeung, BC, OR, VK*
- using D-Wave for simulating real-world disordered materials and, review for Materials Chem *Bruno Camino, …*
- quantum predictor-corrector strategy Omer Rathore, HK, NC, AB (use QPU to check if a costly classical solution step for Ax = b is required)

current challenges ...

- viable encodings? *depends on required outputs from QPU; may lose advantage*
- training for application specialists? enable quantum algorithm design by application experts

Quantum Enhanced Verified Exascale Computing

QEVEC KE:

★ results made possible through KE:
bringing together a team with diverse knowledge and backgrounds

- 6-monthly team meetings focused on the science, to learn from each other and plan projects
- 3 workshops on fluid simulations (joint with CCP-QC) to collaborate with wider community [led to QuANDiE funding]
- attending PAX-HPC and SEAVEA meetings to share progress
- Scientific Applications of Quantum Computing: meeting at LSE Bankside 22nd September 2023 covering biology, chemistry and materials simulations

Quantum Enhanced Verified Exascale Computing