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ExCALIBUR NEPTUNE

• Modelling the plasma edge/exhaust.

• A long-established exascale grand-challenge multi-physics, 

multi-scale problem.

• Complexity: turbulence, many species, atomic physics, etc.

• Kinetic effects: out-of-thermal equilibrium matter (few 
collisions), requires coupled fluid and particles.

ITER Magnet Coils
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Core Components
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NESO-Particles: Core Components

• SYCL Particle framework

• Unstructured meshes

• Particle data communication

1. Highly directional plasma flow (along field lines)
2. Fast neutral flow (typically global and omnidirectional)

3. Unstructured high-order mesh

• Particle Based Operations/Data structures

1. Particle properties – position, velocity, charge, id...
2. Loops over particles

3. Degrees of Freedom (DOF) – Particle Loops

4. Particle – Particle Loops

Combination of halo regions plus a 

global move method.
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NESO-Particles: Halos

• Halos enable local communication patterns.

• Larger halo – more likely particle is communicated via local 

method.

• Can choose wider halo widths with faster particle movement.

3D halo building example.
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Particle Data
ParticleGroup, ParticleDat

• Combines the: mesh, compute 

device and particle data.

• Implements particle bookkeeping 

– cells and MPI ranks.

• General particle properties, e.g. 
charge, mass, weight, velocity.
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NESO
Coupling Finite Element Method and Particles

• Coupling from particles to FEM via 

L2 Galerkin projection.

• FEM to particles is point evaluation.

• Extends to complex geometry.
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• Uniformly distributed positions

• Gaussian distributed weights

3D projection example on a half torus constructed with Hexahedrons



© Crown Copyright 2023

The End

The support of the UK Meteorological Office

and Strategic Priorities Fund is acknowledged.
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Initial Profiling/Scaling

• Two-stream heavily biased towards particle work over finite element work.

• Strong scaling limit approximately 100k particles/core.
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PIC Loop
Overview

• Integration done with suitable integrator (Velocity-Verlet).

• Synopsis – More involved (and useful) schemes may combine steps.

• PIC schemes exist that conserve quantities of interest, e.g. charge(mass), energy 

and momentum.

• Loop till convergence/end time.

10



© Crown Copyright 2023

Two Stream Instability

NESO [1]

• Test implementations integrating particle 

capabilities and FEM.

• Can be built using Spack package manager.

• 2D2V electrostatic particle-in-cell solver.

• Nektar++ provides Poisson solve.

Tests
• Linear growth rates of unstable modes.

• Energy conservation.

1. https://github.com/ExCALIBUR-NEPTUNE/NESO

Instability growth rate vs theory

Time evolution (left to right) of 512k interacting particles. Colour is y-velocity.

Time
x

y
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Two Stream Instability
Motivational Example

• Periodic Boundary Conditions

• Overall charge neutral system

• Electrostatic interactions through a mesh representation 

(not point to point Coulomb interactions)

• Initial velocities are +1/-1 in x
• Unstable initial conditions
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NESO Field Solve: Nektar++

Structure

• Set of libraries.

• C++ code with MPI parallelism for CPUs.

• Refactoring for performance portability / GPUs / C++17.

Provenance

• Proven scaling to c.100k cores.

• Well-tested code.

• Established community of developers / users.

Benefit Good complex geometry support.

1. https://www.nektar.info

D. Moxey (King’s College London); C.D. Cantwell, S.J. Sherwin (Imperial 

College London)

CFD simulation of Elemental 

RP1 track car. 

• Arbitrary convergence order p.(Error h^p (element size h)).

• Arithmetic intensity – increased number of operations on 

same data - counters HPC data movement bottleneck.

• Flow preferentially along field lines.

• Good support for complicated geometries, curved elements.
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NESO-Particles
Global Particle Movement

• Anywhere to Anywhere particle 

movement supported (2D and 3D).

• Implemented with halos + coarse grid.

• Tuneable local communication via 

variable halo width.

NESO:

• Bins particles into 2D and 3D elements.

• Caches reference positions 

(projection/evaluation).
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Projection Example
500K particles, 10x10 Quadrilateral mesh
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• Uniformly distributed positions

• Gaussian distributed weights
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Projection
L2 Galerkin Projection

• Particle representation

• Finite element representation.
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Projection
L2 Galerkin Projection

• Require evaluation of each basis function 

at each particle location.

• Implemented as SYCL kernels

• Static polymorphism (CRTP) for basis 

function types.
• CRTP as virtual functions are not device 

callable

• Given basis functions and DOFs – 

function evaluation is "easy".

• Dirac delta particle shape - 

No quadrature.
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Summary

Current status:

• Efficient particle coupling between finite elements and particles 

(project/evaluate).

• MPI+SYCL implementation (CPU + GPU execution).

In progress:

• Implementation of plasma turbulence models:

1. Fluid approximation of plasma

2. Kinetic Neutral species (particles)

3. Plasma-Neutral coupling through project/evaluate
4. Testing implementation using plasma turbulence problems

Continuous:

• Cycle of profile and improve implementations on CPU/GPU 

architectures.
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ParticleLoop

 auto k_P = (*particle_group)[Sym<REAL>("POSITION")]->cell_dat.device_ptr();
 auto k_V = (*particle_group)[Sym<REAL>("VELOCITY")]->cell_dat.device_ptr();

 auto pl_iter_range = ...; auto pl_stride = ...; auto pl_npart_cell = …;

 sycl_target->queue
 .submit([&](sycl::handler &cgh) {

 cgh.parallel_for<>(
 sycl::range<1>(pl_iter_range), [=](sycl::id<1> idx) {
 NESO_PARTICLES_KERNEL_START
 const INT cellx = NESO_PARTICLES_KERNEL_CELL;
 const INT layerx = NESO_PARTICLES_KERNEL_LAYER;

 k_P[cellx][0][layerx] += 0.001 * k_V[cellx][0][layerx];
 k_P[cellx][1][layerx] += 0.001 * k_V[cellx][1][layerx];

 NESO_PARTICLES_KERNEL_END
 });

 })
 .wait_and_throw();

Key:

• (standard) SYCL

• NESO-Particles API

• User Kernel

KERNEL_START/END are 

macros for CPU/GPU loop 

ordering
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Next steps: 2D3V plasma proxyapp
2D plasma 

turbulence with 

neutral particle 

source terms

• Tight-coupled integration of the spectral / hp and particles.

• Kinetic neutral species in plasma background.

• Due by end Mar 2023.

Plasma turbulence 

in Nektar++

Nektar++ [1] implementation of equations from existing Hermes-3 code (finite difference) 

[2].

Neutral particles
Neutral particles do not feel confining magnetic field, but ionize as they interact with plasma 

– source terms in fluid equations ( = coupling).

1. https://github.com/ExCALIBUR-NEPTUNE/nektar-driftplane 2. https://github.com/bendudson/hermes-3 20
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SYCL Experience

• Thoughts:

1. CI – want to retain portability across SYCL implementations / hardware

2. Developer/user environments – code needs to run on the pseudorandom environments in 

the wild.

3. SYCL_EXTERNAL – optional in standard. Nice to be able to write device functions.
4. 2020 spec significantly improves usability (64bit atomics, usm)

• Works out-of-the-box:

1. Profiling, vtune/nvprof

2. Composition with MPI
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Code Generation

• Kernel and loop structure are captured (can perform higher level optimisations).

• Execution method is now tuneable and not the concern of the domain specialist (separation of 

concerns)

• Scope to alter how kernels perform more complex operations (RNG, special functions) on different 

hardware.

• Requires good abstractions:

1. ParticleLoops, field deposition/evaluation are first steps.

2. Neutral physics/molecular models are complex.
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Code Generation – possible solution?
P = ParticleSymbol(..., "P"); V = ParticleSymbol(..., "V")
dt = Constant(0.001)

@kernel_inline
def dot_product_3d(a1, a2, a3, b1, b2, b3):

 return (a1 * b1) + (a2 * b2) + (a3 * b3)

@kernel_inline
def l2_squared_3d(a1, a2, a3):

 return dot_product_3d(a1, a2, a3, a1, a2, a3)

# Looping structure is captured
px = ParticleLoop()

@kernel
def k_euler(P, V):

 for dx in range(2):
 P[px, dx] = P[px, dx] + dt * V[px, dx]

 ke = l2_squared_3d(V[px,0], V[px,1], V[px,2])

Loop(k_euler, P, V)

for (int dx = 0; dx < 2; dx+=1)
{
 P[neso_cellx][dx][neso_layerx] = 
P[neso_cellx][dx][neso_layerx] + 
0.001*V[neso_cellx][dx][neso_layerx];
}
auto a1_0 = 
V[neso_cellx][0][neso_layerx];
auto a2_1 = 
V[neso_cellx][1][neso_layerx];
auto a3_2 = 
V[neso_cellx][2][neso_layerx];
auto a1_0_3 = a1_0;
auto a2_1_4 = a2_1;
auto a3_2_5 = a3_2;
auto b1_3_6 = a1_0;
auto b2_4_7 = a2_1;
auto b3_5_8 = a3_2;
auto ke = a1_0_3*b1_3_6 + 
a2_1_4*b2_4_7 + a3_2_5*b3_5_8;
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Proxyapps inventory
Proxyapp Framework Languag

e

Comments Sample 

output

nektar-driftwave Nektar++ C++ 2D Hasegawa-Wakatani 

equations

nektar-diffusion Nektar++ C++ strongly anisotropic diffusion

vertical natural convection in spectral / hp, 2D and 3D Nektar++ C++ incompressible Navier-Stokes 

with buoyancy

2D plasma turbulence equations in spectral / hp Nektar++ C++ Hermes-3 equation system

1D fluid solver with UQ and realistic boundary 

conditions

Nektar++ C++ 1D model of scrape-off layer

Vlasov-Poisson kinetic solver in spectral / hp Nektar++ C++ due Dec 2022

moment-kinetics new code (Univ. 

Oxford)

Julia moment-kinetic gyro-averaged 

code

minepoch EPOCH (Univ. 

Warwick)

Fortran used for testing particle 

implementations

electrostatic PIC proxyapp NESO-Particles C++ / SYCL due Dec 2022

2D3V coupled fluids-neutral particles proxyapp NESO-Particles C++ / SYCL due Mar 2023 coming soon
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Community overview

UKAEA 

TEAM
Rob Akers, Wayne Arter, Matthew Barton, James Cook, John Omotani, Joseph Parker, Owen Parry, Will Saunders, Ed Threlfall.

UKRI 

GRANTS

• University of Exeter (VVUQ, surrogate models): Peter Challenor, Tim Dodwell, Louise Kimpton.

• King’s College London (Nektar++): Mashy Green, David Moxey.

• Imperial College London (Nektar++): Chris Cantwell, Bin Liu, Spencer Sherwin.

• University of Oxford: Michael Barnes, Patrick Farrell, Michael Hardman.

• STFC Hartree Centre: Vasil Alexandrov, Hussam al-Daas, Tyrone Rees, Emre Sahin, Andrew Sunderland, Sue Thorne.

• University College London (VVUQ): Kevin Bronik, Peter Coveney, Matt Graham, Serge Guillas, Tuomas Koskela, Yiming Yang.

• University of Warwick (DSLs): Gihan Mudalige.

• University of York (plasma physics, support & coordination, DSLs): David Dickinson, Ed Higgins, Chris Ridgers, Steven Wright.

ALUMNI
• University of Oxford: Felix Parra-Diaz.

• University of Warwick (EPOCH): Ben McMillan, Tom Goffrey.

• University of York: Ben Dudson.

OUTPUT

(INC. 

CODE)

• Proxyapps code (MIT licence): see repositories on https://github.com/ExCALIBUR-NEPTUNE (some, inc. NESO and NESO-

Particles, are public).

• Large body of supporting documents and reports – https://github.com/ExCALIBUR-NEPTUNE/Documents (currently private).

• Developer website in development.
Participation welcomed!
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