
NESO-PARTICLES: A PERFORMANCE PORTABLE LIBRARY FOR FULL
COUPLING OF PARTICLES TO FINITE ELEMENT FRAMEWORKS

Will Saunders, James Cook, UKAEA

ExCALIBUR Workshop 2023

© Crown Copyright 2023

ExCALIBUR NEPTUNE

• Modelling the plasma edge/exhaust.

• A long-established exascale grand-challenge multi-physics,

multi-scale problem.

• Complexity: turbulence, many species, atomic physics, etc.

• Kinetic effects: out-of-thermal equilibrium matter (few
collisions), requires coupled fluid and particles.

ITER Magnet Coils

2

© Crown Copyright 2023

Core Components

3

© Crown Copyright 2023

NESO-Particles: Core Components

• SYCL Particle framework

• Unstructured meshes

• Particle data communication

1. Highly directional plasma flow (along field lines)
2. Fast neutral flow (typically global and omnidirectional)

3. Unstructured high-order mesh

• Particle Based Operations/Data structures

1. Particle properties – position, velocity, charge, id...
2. Loops over particles

3. Degrees of Freedom (DOF) – Particle Loops

4. Particle – Particle Loops

Combination of halo regions plus a

global move method.

4

© Crown Copyright 2023

NESO-Particles: Halos

• Halos enable local communication patterns.

• Larger halo – more likely particle is communicated via local

method.

• Can choose wider halo widths with faster particle movement.

3D halo building example.

5

© Crown Copyright 2023

Particle Data
ParticleGroup, ParticleDat

• Combines the: mesh, compute

device and particle data.

• Implements particle bookkeeping

– cells and MPI ranks.

• General particle properties, e.g.
charge, mass, weight, velocity.

6

© Crown Copyright 2023

NESO
Coupling Finite Element Method and Particles

• Coupling from particles to FEM via

L2 Galerkin projection.

• FEM to particles is point evaluation.

• Extends to complex geometry.

7

• Uniformly distributed positions

• Gaussian distributed weights

3D projection example on a half torus constructed with Hexahedrons

© Crown Copyright 2023

The End

The support of the UK Meteorological Office

and Strategic Priorities Fund is acknowledged.

8

© Crown Copyright 2023

Initial Profiling/Scaling

• Two-stream heavily biased towards particle work over finite element work.

• Strong scaling limit approximately 100k particles/core.

9

© Crown Copyright 2023

PIC Loop
Overview

• Integration done with suitable integrator (Velocity-Verlet).

• Synopsis – More involved (and useful) schemes may combine steps.

• PIC schemes exist that conserve quantities of interest, e.g. charge(mass), energy

and momentum.

• Loop till convergence/end time.

10

© Crown Copyright 2023

Two Stream Instability

NESO [1]

• Test implementations integrating particle

capabilities and FEM.

• Can be built using Spack package manager.

• 2D2V electrostatic particle-in-cell solver.

• Nektar++ provides Poisson solve.

Tests
• Linear growth rates of unstable modes.

• Energy conservation.

1. https://github.com/ExCALIBUR-NEPTUNE/NESO

Instability growth rate vs theory

Time evolution (left to right) of 512k interacting particles. Colour is y-velocity.

Time
x

y

11

© Crown Copyright 2023

Two Stream Instability
Motivational Example

• Periodic Boundary Conditions

• Overall charge neutral system

• Electrostatic interactions through a mesh representation

(not point to point Coulomb interactions)

• Initial velocities are +1/-1 in x
• Unstable initial conditions

12

© Crown Copyright 2023

NESO Field Solve: Nektar++

Structure

• Set of libraries.

• C++ code with MPI parallelism for CPUs.

• Refactoring for performance portability / GPUs / C++17.

Provenance

• Proven scaling to c.100k cores.

• Well-tested code.

• Established community of developers / users.

Benefit Good complex geometry support.

1. https://www.nektar.info

D. Moxey (King’s College London); C.D. Cantwell, S.J. Sherwin (Imperial

College London)

CFD simulation of Elemental

RP1 track car.

• Arbitrary convergence order p.(Error h^p (element size h)).

• Arithmetic intensity – increased number of operations on

same data - counters HPC data movement bottleneck.

• Flow preferentially along field lines.

• Good support for complicated geometries, curved elements.

13

© Crown Copyright 2023

NESO-Particles
Global Particle Movement

• Anywhere to Anywhere particle

movement supported (2D and 3D).

• Implemented with halos + coarse grid.

• Tuneable local communication via

variable halo width.

NESO:

• Bins particles into 2D and 3D elements.

• Caches reference positions

(projection/evaluation).

14

© Crown Copyright 2023

Projection Example
500K particles, 10x10 Quadrilateral mesh

15

• Uniformly distributed positions

• Gaussian distributed weights

© Crown Copyright 2023

Projection
L2 Galerkin Projection

• Particle representation

• Finite element representation.

16

© Crown Copyright 2023

Projection
L2 Galerkin Projection

• Require evaluation of each basis function

at each particle location.

• Implemented as SYCL kernels

• Static polymorphism (CRTP) for basis

function types.
• CRTP as virtual functions are not device

callable

• Given basis functions and DOFs –

function evaluation is "easy".

• Dirac delta particle shape -

No quadrature.

17

© Crown Copyright 2023

Summary

Current status:

• Efficient particle coupling between finite elements and particles

(project/evaluate).

• MPI+SYCL implementation (CPU + GPU execution).

In progress:

• Implementation of plasma turbulence models:

1. Fluid approximation of plasma

2. Kinetic Neutral species (particles)

3. Plasma-Neutral coupling through project/evaluate
4. Testing implementation using plasma turbulence problems

Continuous:

• Cycle of profile and improve implementations on CPU/GPU

architectures.

18

© Crown Copyright 2023

ParticleLoop

 auto k_P = (*particle_group)[Sym<REAL>("POSITION")]->cell_dat.device_ptr();
 auto k_V = (*particle_group)[Sym<REAL>("VELOCITY")]->cell_dat.device_ptr();

 auto pl_iter_range = ...; auto pl_stride = ...; auto pl_npart_cell = …;

 sycl_target->queue
 .submit([&](sycl::handler &cgh) {

 cgh.parallel_for<>(
 sycl::range<1>(pl_iter_range), [=](sycl::id<1> idx) {
 NESO_PARTICLES_KERNEL_START
 const INT cellx = NESO_PARTICLES_KERNEL_CELL;
 const INT layerx = NESO_PARTICLES_KERNEL_LAYER;

 k_P[cellx][0][layerx] += 0.001 * k_V[cellx][0][layerx];
 k_P[cellx][1][layerx] += 0.001 * k_V[cellx][1][layerx];

 NESO_PARTICLES_KERNEL_END
 });

 })
 .wait_and_throw();

Key:

• (standard) SYCL

• NESO-Particles API

• User Kernel

KERNEL_START/END are

macros for CPU/GPU loop

ordering

19

Next steps: 2D3V plasma proxyapp
2D plasma

turbulence with

neutral particle

source terms

• Tight-coupled integration of the spectral / hp and particles.

• Kinetic neutral species in plasma background.

• Due by end Mar 2023.

Plasma turbulence

in Nektar++

Nektar++ [1] implementation of equations from existing Hermes-3 code (finite difference)

[2].

Neutral particles
Neutral particles do not feel confining magnetic field, but ionize as they interact with plasma

– source terms in fluid equations (= coupling).

1. https://github.com/ExCALIBUR-NEPTUNE/nektar-driftplane 2. https://github.com/bendudson/hermes-3 20

© Crown Copyright 2023

SYCL Experience

• Thoughts:

1. CI – want to retain portability across SYCL implementations / hardware

2. Developer/user environments – code needs to run on the pseudorandom environments in

the wild.

3. SYCL_EXTERNAL – optional in standard. Nice to be able to write device functions.
4. 2020 spec significantly improves usability (64bit atomics, usm)

• Works out-of-the-box:

1. Profiling, vtune/nvprof

2. Composition with MPI

21

© Crown Copyright 2023

Code Generation

• Kernel and loop structure are captured (can perform higher level optimisations).

• Execution method is now tuneable and not the concern of the domain specialist (separation of

concerns)

• Scope to alter how kernels perform more complex operations (RNG, special functions) on different

hardware.

• Requires good abstractions:

1. ParticleLoops, field deposition/evaluation are first steps.

2. Neutral physics/molecular models are complex.

22

© Crown Copyright 2023

Code Generation – possible solution?
P = ParticleSymbol(..., "P"); V = ParticleSymbol(..., "V")
dt = Constant(0.001)

@kernel_inline
def dot_product_3d(a1, a2, a3, b1, b2, b3):

 return (a1 * b1) + (a2 * b2) + (a3 * b3)

@kernel_inline
def l2_squared_3d(a1, a2, a3):

 return dot_product_3d(a1, a2, a3, a1, a2, a3)

Looping structure is captured
px = ParticleLoop()

@kernel
def k_euler(P, V):

 for dx in range(2):
 P[px, dx] = P[px, dx] + dt * V[px, dx]

 ke = l2_squared_3d(V[px,0], V[px,1], V[px,2])

Loop(k_euler, P, V)

for (int dx = 0; dx < 2; dx+=1)
{
 P[neso_cellx][dx][neso_layerx] =
P[neso_cellx][dx][neso_layerx] +
0.001*V[neso_cellx][dx][neso_layerx];
}
auto a1_0 =
V[neso_cellx][0][neso_layerx];
auto a2_1 =
V[neso_cellx][1][neso_layerx];
auto a3_2 =
V[neso_cellx][2][neso_layerx];
auto a1_0_3 = a1_0;
auto a2_1_4 = a2_1;
auto a3_2_5 = a3_2;
auto b1_3_6 = a1_0;
auto b2_4_7 = a2_1;
auto b3_5_8 = a3_2;
auto ke = a1_0_3*b1_3_6 +
a2_1_4*b2_4_7 + a3_2_5*b3_5_8;

23

Proxyapps inventory
Proxyapp Framework Languag

e

Comments Sample

output

nektar-driftwave Nektar++ C++ 2D Hasegawa-Wakatani

equations

nektar-diffusion Nektar++ C++ strongly anisotropic diffusion

vertical natural convection in spectral / hp, 2D and 3D Nektar++ C++ incompressible Navier-Stokes

with buoyancy

2D plasma turbulence equations in spectral / hp Nektar++ C++ Hermes-3 equation system

1D fluid solver with UQ and realistic boundary

conditions

Nektar++ C++ 1D model of scrape-off layer

Vlasov-Poisson kinetic solver in spectral / hp Nektar++ C++ due Dec 2022

moment-kinetics new code (Univ.

Oxford)

Julia moment-kinetic gyro-averaged

code

minepoch EPOCH (Univ.

Warwick)

Fortran used for testing particle

implementations

electrostatic PIC proxyapp NESO-Particles C++ / SYCL due Dec 2022

2D3V coupled fluids-neutral particles proxyapp NESO-Particles C++ / SYCL due Mar 2023 coming soon

24

Community overview

UKAEA

TEAM
Rob Akers, Wayne Arter, Matthew Barton, James Cook, John Omotani, Joseph Parker, Owen Parry, Will Saunders, Ed Threlfall.

UKRI

GRANTS

• University of Exeter (VVUQ, surrogate models): Peter Challenor, Tim Dodwell, Louise Kimpton.

• King’s College London (Nektar++): Mashy Green, David Moxey.

• Imperial College London (Nektar++): Chris Cantwell, Bin Liu, Spencer Sherwin.

• University of Oxford: Michael Barnes, Patrick Farrell, Michael Hardman.

• STFC Hartree Centre: Vasil Alexandrov, Hussam al-Daas, Tyrone Rees, Emre Sahin, Andrew Sunderland, Sue Thorne.

• University College London (VVUQ): Kevin Bronik, Peter Coveney, Matt Graham, Serge Guillas, Tuomas Koskela, Yiming Yang.

• University of Warwick (DSLs): Gihan Mudalige.

• University of York (plasma physics, support & coordination, DSLs): David Dickinson, Ed Higgins, Chris Ridgers, Steven Wright.

ALUMNI
• University of Oxford: Felix Parra-Diaz.

• University of Warwick (EPOCH): Ben McMillan, Tom Goffrey.

• University of York: Ben Dudson.

OUTPUT

(INC.

CODE)

• Proxyapps code (MIT licence): see repositories on https://github.com/ExCALIBUR-NEPTUNE (some, inc. NESO and NESO-

Particles, are public).

• Large body of supporting documents and reports – https://github.com/ExCALIBUR-NEPTUNE/Documents (currently private).

• Developer website in development.
Participation welcomed!

25

https://github.com/ExCALIBUR-NEPTUNE
https://github.com/ExCALIBUR-NEPTUNE/Documents

	Slide 1: NESO-Particles: a performance portable library for full coupling of particles to finite element frameworks
	Slide 2: ExCALIBUR NEPTUNE
	Slide 3: Core Components
	Slide 4: NESO-Particles: Core Components
	Slide 5: NESO-Particles: Halos
	Slide 6: Particle Data
	Slide 7: NESO
	Slide 8
	Slide 9: Initial Profiling/Scaling
	Slide 10: PIC Loop
	Slide 11: Two Stream Instability
	Slide 12: Two Stream Instability
	Slide 13: NESO Field Solve: Nektar++
	Slide 14: NESO-Particles
	Slide 15: Projection Example
	Slide 16: Projection
	Slide 17: Projection
	Slide 18: Summary
	Slide 19: ParticleLoop
	Slide 20: Next steps: 2D3V plasma proxyapp
	Slide 21: SYCL Experience
	Slide 22: Code Generation
	Slide 23: Code Generation – possible solution?
	Slide 24: Proxyapps inventory
	Slide 25: Community overview

