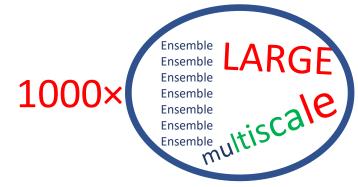
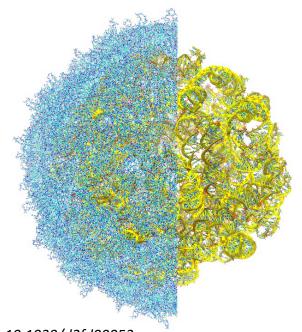

Exabiosim: Establishing the Accessible Computational Regimes for Biomolecular Simulations at Exascale

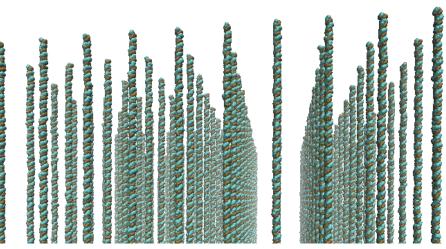
Rob Welch, James Gebbie-Rayet, <u>Danny Cole</u> & Sarah Harris

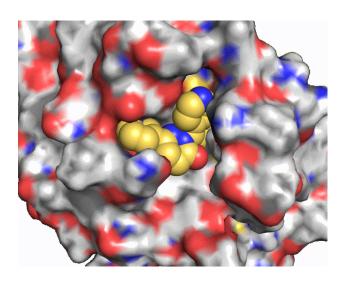
Why biomolecular simulation?

complex


Computer simulations provide key dynamical information on biomacromolecules relevant to human health and disease

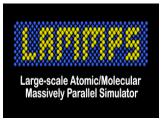



But biology is heterogeneous, multiscale (length and time), is driven by small free energy changes, and is challenging to compare with experiment

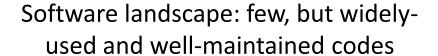


Opportunities at Exascale

DOI: 10.1039/d2fd00053a


Massive systems & integrating with experimental data will help us explore the limits of current parallel programming

Multiscale DNA modeling at the atomistic and coarse-grained level, up to the scale of chromatin and entire chromosomes


Ensemble computing for drug discovery requires huge numbers of lightly coupled compute resources

Our Community

We are generating toy and showcase application benchmarks to test performance on Excalibur testbeds

- Open community workshops
- Training the next generation of biomolecular simulators
 - WHPC@Exascale workshop

Acknowledgements

HPC Development

James Gebbie-Rayet Christopher Woods Charlie Laughton Alan Real

Ensemble Computing

Antonia Mey
Danny Cole
Shozeb Haider
Edina Rosta
Julien Michel
Nicolas Foloppe

Massive Systems

Sarah Harris Adrian Mulholland Syma Khalid Jon Essex

Multiscale Modelling

Oli Henrich Agnes Noy Rosana Collepardo Davide Marenduzzo

Integration with Experiment

Tom Burnley Franca Fraternali Dmitry Nerukh

Research Software Engineer

Rob Welch

Project Support

Pirjo Johnson

