A Distribured Memory Tri-diagonal Solver Optimised for CPU and GPU Architectures

Semih Akkurt and Sylvain Laizet

Department of Aeronautics Imperial College London

CIUK 2023 7 December 2023, Manchester UK

Xcompact3D

- Various discretisations for solving PDE's result in tridiagonal systems.
- This study focuses on Compact Finite Difference Schemes.
 - Space-implicit coupling in compact schemes results in tridiagonal systems.
- In Xcompact3D solver, you can have around 50 batches of tridiagonal systems where each batch may contain around $\sim 10^{6/7}$ individual systems of size $\sim 10^{3/4}$ with a total DOF up to around $\sim 10^{12}$.
- Challenge on supercomputers.

< □ > < □ > < □ > < □ > < □ > < □ >

High-order Compact Finite Difference Schemes

- Example from Xcompact3D based on 6th order compact FD schemes.
- $\bullet\,$ We solve \sim 50 batches of such systems per time step.

$$\alpha f'_{i-1} + f'_i + \alpha f'_{i+1} = a \frac{f_{i+1} - f_{i-1}}{2\Delta x} + b \frac{f_{i+2} - f_{i-2}}{4\Delta x}$$

$$\begin{bmatrix} b_0 & c_0 & & & & \\ a_1 & b_1 & c_1 & & & \\ & a_2 & b_2 & c_2 & & \\ & & \ddots & \ddots & \ddots & \\ & & & a_{n-1} & b_{n-1} & c_{n-1} \\ & & & & & b_n \end{bmatrix} \begin{bmatrix} u_0 \\ u_1 \\ u_2 \\ \vdots \\ u_{n-1} \\ u_n \end{bmatrix} = \begin{bmatrix} d_0 \\ d_1 \\ d_2 \\ \vdots \\ d_{n-1} \\ d_n \end{bmatrix}$$

Thomas Algorithm with 1D/2D Decomposition

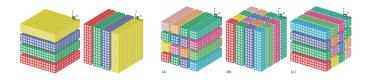
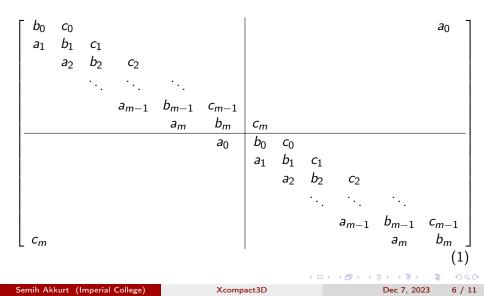
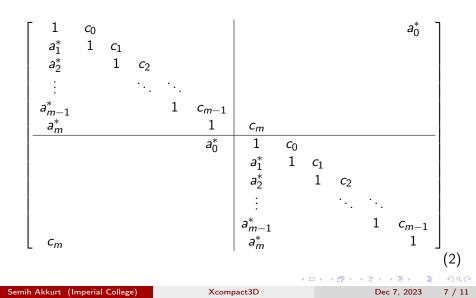
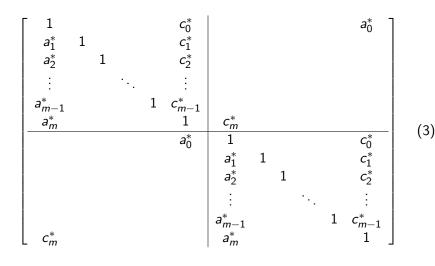


Figure: 1D/2D (Slab/Pencil) Domain Decomposition

- Currently, Xcompact3D does not use distributed solvers.
- Thus, Xcompact3D require 12 pairs of data transfers per iteration.
- These large scale data transfers can be costly.

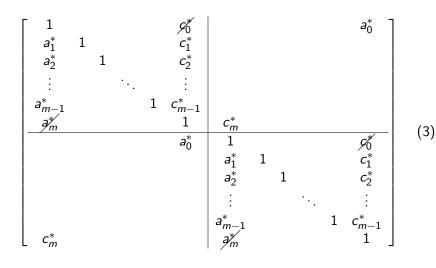

Semih


• The best case behaviour can be modelled theoretically.


512 ³ Domain							
	# GPUs	Comp. BW	Comm. BW	Comp. Time	Comm. Time	Total Time	
	1	332 GiB	0 GiB	0.300 s	0 s	0.300 s	
	2	166 GiB	3 GiB	0.150 s	0.015 s	0.165 s	
	4	83 GiB	2.25 GiB	0.075 s	0.004 s	0.079 s	
	8	42 GiB	1.31 GiB	0.038 s	< <u>0.060</u> · · ·	∋ 0.098 s ∋	500
h Akkurt (Imperial College)			Xcompact3D			Dec 7, 2023	4 / 11

- Examples algorithms are PDD (Sun 1995) and SPIKE (Polizzi and Sameh 2007)
- Our strategy combines Hybrid Thomas-PCR (Laszlo 2016) and PDD (Sun 1995) algorithms
- 1/2/3 D domain decomposition, no all-to-all communication between sub-domains.
- A distributed solver is implemented along the direction that is split between ranks

< □ > < □ > < □ > < □ > < □ > < □ >

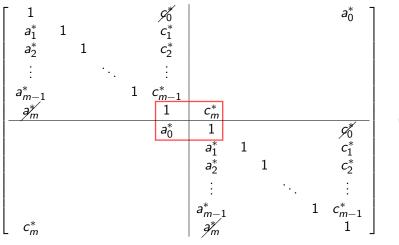


Semih Akkurt (Imperial College)

Xcompact3D

Dec 7, 2023

8 / 11



Semih Akkurt (Imperial College)

Xcompact3D

Dec 7, 2023

8 / 11

(3)

Dec 7, 2023 8

8 / 11

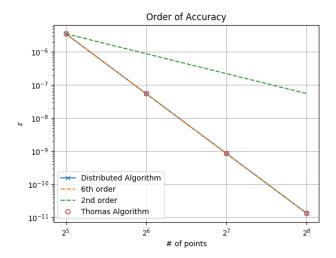


Figure: Order of Accuracy comparison.

Image: Image:

Semih Akkurt (Imperial College)

Xcompact3D

3 Dec 7, 2023 9 / 11

-

Strong Scaling - Distributed Tridiagonal Solvers

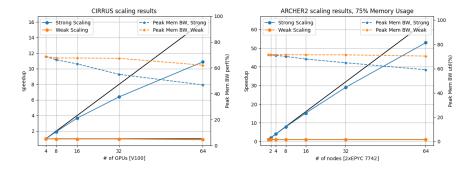


Figure: Strong Scaling on a GPU and CPU cluster.

Semih Akkurt (Imperial College)

Xcompact3D

Dec 7, 2023 10 / 11

э

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

- Number of points per rank is important for accuracy
- Global communications are eliminated for the tridiagonal solvers.
 - Few layers halo-data communication between previous and next ranks
- Constant communication overhead regardless of the number of ranks

Thank you!