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Background - SysGenX

Nuclear Fusion Turbo-generator technology



Efficiently solve the problem

Apz="b (1)

using an iterative approach:

T = Tp—1 + Ck .
Requirements:

- computing ¢, should be "cheap” and "scalable”
- the correction should be good enough ¢

- use DOLFINx functions as building blocks.



Model Problem - Code Generation

Find w € V such that:

/Vu~Vvdx:/fvdm (2)
Q Q

1V = fem.functionspace(mesh, ("Lagrange", degree))

2

3 u = ufl.TrialFunction(V),

4 v = ufl.TestFunction(V)

6 # Classical bilinear form

7 a = ufl.inner(ufl.grad(u), ufl.grad(v)) = ufl.dx

s a0 = fem.form(a, dtype=dtype)

We're more interested in the case where degree P > 3.



ltigrid Operators

h-multigrid p-multigrid

N o kRN

Apply v1 pre-smoothing steps (G) - 2 = Gap_1
Compute residual - r, = Apx, — b

Restrict residual - 7y = Ry,

Solve coarse problem - ey = A,}er

Prolong correction - e, = Pegy

Correct- o, = x + ep,

Apply post-smoother (G) - o, = Gzy_1



PMG Implementation

PMG Smoother
Chebyshev

AMG Smoother
Jacobi

®S 0

Coarse Solver

PMG

GMG/AMG




Timing - "Serial”

Almost 90% of the time on the fine grid.
Hierarchy:

- Level Q3: dofs 4,999,696 - nnz 616'230'976
- Level Q2: dofs 1,494,425 - nnz 93,773,201
- Level Q1: dofs 191,748 - nnz 4,999,696

Residual Q2
1.0%
Residual Q3

___ Coarse Solve
1.8%

Cheb Q3



GPU nodes - LUMI-G
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2978 nodes with 4 AMD MI250x GPUs and a single 64 cores AMD EPYC "Trento” CPU
Programming model: MPI + (HIP / SYCL)



Parallelization

- Vector updates, such as error correction, are performed locally.
- Linear Operators: can be computed separately for "shared” and
"non-shared” cells.

Process 1 - Device 1

Process 0 - Device 0

Pack send
buffer

st { Send } [ Receive ]

Time

] { (s i el ] [ Unpack recv } [ Action shared ]

Lelts buffer cells




Scaling Results

-+ Tests on LUMI supercomputer:

- 3rd place position on the TOP 500 list (1st place in Europe)
- Up to 8192 devices (40 % of full supercomputer).
- Up to 100 billion dofs.

Iteration count vs problem size Weak Scaling
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Strong Scaling

Weak scaling
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Conclusion

- Dolfinx provides the necessary building blocks for implementing
PMG and GMG.

- The implementation of these methods can be optimized for
parallel execution by overlapping computation and
communication.

- In the strong scale limit both intra-node performance and
scaling suffer:

- Latency is a major issue
- Difficulty to hide communication ( <30% parallel efficiency)
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