SysGenX Project: Porting to GPU on LUMI-G
p-multigrid with Dolfinx on GPUs

Igor A. Baratta
December 7, 2023

Department of Engineering

Background - SysGenX

Nuclear Fusion Turbo-generator technology

Efficiently solve the problem

Apz="b (1)

using an iterative approach:

T = Tp—1 + Ck .
Requirements:

- computing ¢, should be "cheap” and "scalable”
- the correction should be good enough ¢

- use DOLFINx functions as building blocks.

Model Problem - Code Generation

Find w € V such that:

/Vu~Vvdx:/fvdm (2)
Q Q

1V = fem.functionspace(mesh, ("Lagrange", degree))

2

3 u = ufl.TrialFunction(V),

4 v = ufl.TestFunction(V)

6 # Classical bilinear form

7 a = ufl.inner(ufl.grad(u), ufl.grad(v)) = ufl.dx

s a0 = fem.form(a, dtype=dtype)

We're more interested in the case where degree P > 3.

ltigrid Operators

h-multigrid p-multigrid

N o kRN

Apply v1 pre-smoothing steps (G) - 2 = Gap_1
Compute residual - r, = Apx, — b

Restrict residual - 7y = Ry,

Solve coarse problem - ey = A,}er

Prolong correction - e, = Pegy

Correct- o, = x + ep,

Apply post-smoother (G) - o, = Gzy_1

PMG Implementation

PMG Smoother
Chebyshev

AMG Smoother
Jacobi

®S 0

Coarse Solver

PMG

GMG/AMG

Timing - "Serial”

Almost 90% of the time on the fine grid.
Hierarchy:

- Level Q3: dofs 4,999,696 - nnz 616'230'976
- Level Q2: dofs 1,494,425 - nnz 93,773,201
- Level Q1: dofs 191,748 - nnz 4,999,696

Residual Q2
1.0%
Residual Q3

___ Coarse Solve
1.8%

Cheb Q3

GPU nodes - LUMI-G

Qut 1o natwork Ot b netwenrk
NIC HIC
{hsal) {hsn0)

NUMA 1 | . HUMA S
7l e S i3
& coras, 16 theeads \ [cares, 16 thraads

eza.eoan | 13 (02 X GPUD 1= "rag.5s iz | | LB
I
B cores, 16 thvads 8 cares, 16 threads
W7 eam Lk }— 2,063 || 8
8 cores, |6threads
H40-47.104117)
NUMAD MUMA 2

Ot 1o network Ot network
—— Imfinity FabricGPU-GPU — PCIGend ESM
[S0+ED GBS (5D+50GE/l

o Infinity FabicCPU-GPU e Etherniet
(36435 /5] (25475 G/

2978 nodes with 4 AMD MI250x GPUs and a single 64 cores AMD EPYC "Trento” CPU
Programming model: MPI + (HIP / SYCL)

Parallelization

- Vector updates, such as error correction, are performed locally.
- Linear Operators: can be computed separately for "shared” and
"non-shared” cells.

Process 1 - Device 1

Process 0 - Device 0

Pack send
buffer

st { Send } [Receive]

Time

] { (s i el] [Unpack recv } [Action shared]

Lelts buffer cells

Scaling Results

-+ Tests on LUMI supercomputer:

- 3rd place position on the TOP 500 list (1st place in Europe)
- Up to 8192 devices (40 % of full supercomputer).
- Up to 100 billion dofs.

Iteration count vs problem size Weak Scaling
50 20.0
17.5
40
15.04
30 12,54
'g § 10.0
250 = 15 W
5.01
10
254
0 0.0
104 10° 10° 107 108 109 1010 10! 102 10° 104
Number of dofs Number of GPUs
Iteration count remains "constant” as we Nearly constant time-to-solution as the

increase the problem size. problem size is proportionally increased. 9

Strong Scaling

Weak scaling
1.0 4
0.9
0.8 -
; 0.7
]
e
= 0.6+
0.5 A
—8— 1 Mdofs
—8— 8 Mdofs
0.4 7 —a— 27 Mdofs
—8— 64 Mdofs
0.3 { —e— 124 Mdofs
2 4 [:] a 10 12 14 16

Number of nodes

Conclusion

- Dolfinx provides the necessary building blocks for implementing
PMG and GMG.

- The implementation of these methods can be optimized for
parallel execution by overlapping computation and
communication.

- In the strong scale limit both intra-node performance and
scaling suffer:

- Latency is a major issue
- Difficulty to hide communication (<30% parallel efficiency)

1

