

## **Exascale computing and** agent-based social simulation (ABSS) Gary Polhill, Alison Heppenstall, Mike Batty, Matt Hare, Doug Salt, Ric Colasanti and Richard Milton



### The ExAMPLER project

- 18 month project started 1 June 2023
- Exploring the potential of exascale computing for ABSS
  - ... with appropriate institutional and software support ...
- Bringing the social sciences into the conversation about exascale computing
- Gap analysis approach
  - O How ready is the ABSS community to take advantage of exascale?
  - $\bigcirc$  What needs to be done to get the ABSS community using exascale?



- 1. Count number of each type in immediate neighbourhood
- 2. If less than % like
  - a. Then
    - i. Move \*
  - b. Else
    - i. Stay







- 1. Count number of each type in immediate neighbourhood
- 2. If less than % like
  - a. Then
    - i. Move \*
  - b. Else
    - i. Stay







Julia



CUDA, HIPS, C++, Fortran



|                                                                                                                                                | Segregation - NetLogo                                                                                                                                                                                                     | – • <mark>×</mark> |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| <u>File Edit Tools Zoom Tab</u>                                                                                                                | s <u>H</u> elp                                                                                                                                                                                                            |                    |
| Interface Info Code                                                                                                                            |                                                                                                                                                                                                                           |                    |
| Find Check                                                                                                                                     | ures 🔻 📗 🗹 Indent automatically 🗌 Code Tab in separate window                                                                                                                                                             |                    |
| plobals [       percent-similar       percent-unhappy       ]       turtles-own [       happy?                                                 | ; on the average, what percent of a turtle's neighbors<br>; are the same color as that turtle?<br>; what percent of the turtles are unhappy?<br>: for each turtle, indicates whether at least %-similar-wanted percent of |                    |
| similar-nearby<br>other-nearby<br>total-nearby<br>]                                                                                            | ; that turtle's neighbors are the same color as the turtle<br>; how many neighboring patches have a turtle with my color?<br>; how many have a turtle of another color?<br>; sum of previous two variables                | ~                  |
| to setup<br>clear-all<br>; create turtles<br>ask patches [                                                                                     | on random patches.                                                                                                                                                                                                        |                    |
| <pre>set pcolor whi if random 100 sprout 1 [ ; 105 ist ; 27 is th set color set size 1 ] ] update-turtles update-globals reset-ticks end</pre> | te<br>< density [ ; set the occupancy density<br>he color number for "blue"<br>e color number for "orange"<br>one-of [105 27]                                                                                             |                    |



CUDA, HIPS, C++, Fortran

#### Policy usage of ABSS (Tobacco town)







CUDA, HIPS, C++, Fortran

### Activities in ExAMPLER

- Systematic Literature Review
  - What is the prevalence of HPC use in ABSS?
  - o What demand is there for HPC use in ABSS?
    - Numbers of reported runs, sizes of space, numbers of agents, etc.
- Visioning workshops (SSC 2023 in Glasgow, London ExAMPLER)
  - Visions for exascale computing support for empirical ABSS
- Roadmap
  - Training ourselves in exascale computing, technology, software and algorithms
  - Workshops next year (iEMSs, SSC 2024 in Cracow, and in Glasgow) what's needed to bring the visions about?
- Knowledge exchange
  - Promoting exascale ABSS at conferences and workshops in the ABSS and HPC communities



#### **ExAMPLER** Work Package 2: Visions of Exascale Computing for Agent-Based Social Simulation



#### 

1<sup>st</sup> ExAMPLER Visioning Workshop on <u>Exascale</u> Computing for Agent-Based Social Simulation:

Uses, benefits and challenges for the social simulation community

Social Science Simulation Conference 2023, <u>4<sup>th</sup> September 2023</u> <u>Matt Hare</u>, Doug Salt, Gary Polhill (JHI) Ric Colasanti (Glasgow Uni) Richard Milton (UCL) <u>matt.hare@hutton.ac.uk</u>



> Two "visions" workshops implemented with academics, policymakers and other stakeholders

2<sup>nd</sup> ExAMPLER Visioning Workshop on Exascale Computing for Agent-Based Social Simulation:

<u>Capabilities, transformational use cases,</u> <u>capacity requirements and potential threats</u>

London Workshop 8-9<sup>th</sup> November 2023 Matt Hare, Doug Salt, Gary Polhill, Richard Milton, Michael Batty, Alison Heppenstall, Ric Colasanti matt.hare@hutton.ac.uk



Some Visions of Exascale Agent-Based Social Simulation: Capabilities, Use Cases, Capacity Requirements, Threats

> Faster, bigger, more detailed



Threats: 1:1 social simulation

Dependence on Artificial Intelligence

> Use Cases: Rapid real time participatory policy modelling

> > General model emulation

Use Cases: Individual-based social science

Threats:

*Inequitable access to exascale resources* 

*Increased energy consumption* 

Formalization of qualitative social theories Sincapacities needed: Lots of Artificial Intelligence

Lots of data

\* For more results, see Hare, M., Salt, D., Colasanti, R., Milton, R., Batty, M., Heppenstall, A., & Polhill, G. (in submission) *Taking Agent-Based Social Simulation to the Next Level Using Exascale Computing: potential use cases, capabilities and threats*. Submitted to: Autonomous Agents and Multi-Agent Systems 2024, New Zealand.

# Professional capacity requirements



In order to exploit the benefits of exascale computing: "Developing scientific software is a highly challenging task ... programmers must address the tricky, highly specialised, low level details of parallelism" XDSL project → https://excalibur.ac.uk/projects/xdsl/



Research

software

engineers

The feared self-limiting cycle that could threaten exascale computing (if funds are absorbed in hardware at the expense of funding enough research software engineers to support the transition). As identified from a component of the causal loop model elicited from the participants of the 2<sup>nd</sup> Workshop in London.