
PSyclone, a source-to-source

transformation and optimisation

tool for Fortran

Sergi Siso1, Rupert Ford1, Andrew Porter1, Chris Dearden1,

Iva Kavcic2, Chris Maynard2, Joerg Henrichs3, Aidan Chalk1,

Nuno Nobre1, Mike Bell2 …

1STFC Hartree Centre
2UK Met Office
3Australian Bureau of Meteorology

ExCALIBUR Workshop, 17th-18th October, 2024

Overview

1.Motivation

2.PSyclone in ExCALIBUR

1.Marine-systems models

2.OpenMP Tasking

3.[xDSL]

3.Conclusions

1. Motivation

HPC is heterogeneous (and diverse)

Name Processor
Linpack

PFlop/s

1 Frontier AMD EPYC Milan 64c

AMD Instinct MI250X

1,207

2 Aurora Intel Xeon Max 9470 52c

Intel Data Center GPU Max

1,012

3 Eagle Intel Xeon Platinum 8480C 48c

Nvidia H100

846

4 Fugaku Fujitsu A64FX 48c 442

5 Lumi AMD EPYC Milan 64c

AMD Instinct MI250X

379

6 Alps Nvidia Grace 72c

Nvidia GH200

270

7 Leonardo Intel Xeon Platinum 8358 32c

Nvidia A100 SMX4

241

Top 500 June ‘24 list

Many HPC applications still use Fortran

Source: https://cpufun.substack.com/p/is-fortran-a-dead-language - Jim Cownie

https://www.archer2.ac.uk/support-access/status.html#:~:text=0.0-,Historical%20usage%20data,-Period

https://cpufun.substack.com/p/is-fortran-a-dead-language
https://www.archer2.ac.uk/support-access/status.html

Collaborative development

▪ Some applications have many contributors from multiple institutions:

▪ Run on different systems in each institution. Hard to maintain multiple
implementations. It must be portable.

▪ Contributors from different areas of expertise. Productivity, readability,
maintainability are essential for the sustainability of the project.

▪ Millions LOCs of FORTRAN (validated long-standing code).

▪ Rewriting existing applications in a GPU-centric programming model is a
challenging proposition.

Fortran

A = B + maxval(C(:,3:8))

• High-level array notation

• Array intrinsics

• Slices

• Pure, Elemental

• Where, Masks

• Non-aliasing semantics

Expressive syntax

Good for optimising

compilers

Fortran vs heterogeneous Fortran

A = B + maxval(C(:,3:8))
!$omp map data(from: B, C)

tmp = -huge(C)

!$omp target

!$omp loop collapse(2) reduction(tmp:max)

do i=1, N

 do j=3, 8

 tmp = max(tmp, C(i, j))

 end do

end do

!$omp end loop

!$omp loop collapse(2)

do i=1, N

 do j=1, M

 A(i,j) = B(i,j) + tmp

 end do

end do

!$omp end loop

!$omp end target

!$omp map data (to: A)

• Loses terse notation

• Harder to maintain, changing a

line easily breaks directives

Is metaprogramming a solution?

▪ Start from a single-source science description in Fortran

▪ At build time generate the required specialised syntax to
target a particular platform / programming model / set of
parameters.

PSyIR
Fortran

Code

Fortran

Backend

Transforms

PSyIR

Transformations

Fortran

Code

Scientific domain

knowledge

Parallelisation and optimisation

encoded as transformation

‘recipes’.

Separation of

concerns

Visible “readable” output

Standard

debugging/profiling

Standard output composable

w. other tools and vendor

compilers

Perf portability: diff.

recipes for each

architectures

PSyclone (BSD 3-clause)

https://github.com/stfc/PSyclone

https://github.com/stfc/PSyclone

2. PSyclone for Marine Systems Models

Excalibur Marine Systems (‘nemo’) Design

NEMO Ocean Model

▪ Nucleus for European Modelling of the Ocean (https://www.nemo-ocean.eu/)

▪ Written in Fortran (120 kLOCs) with MPI

▪ NEMO is intended to be a flexible tool for studying the ocean and its interactions
with the other components of the earth climate system (atmosphere, sea-ice,
biogeochemical tracers) over a wide range of space and time scales.

▪ The NEMO Consortium comprises five European institutes:

https://www.nemo-ocean.eu/

Fortran with PSyclone: NEMO loop example

Can also contain domain

specific logic and whole

program optimisation!

0

0.5

1

1.5

2

2.5

3

Intel Xeon W-2133
MPI Full Node

PSyclone OpenMP
GPU Release 2.2.0

PSyclone OpenMP
GPU March2023

PSyclone OpenMP
GPU Dec 2023

PSyclone OpenACC
+ manual tweaks

ti
m

e
 p

er
 t

im
es

te
p

 (
s)

PSyclone NEMO 4.0.2 on NVIDIA V100
(full UK Met Office GO8 - ORCA1 / wo IO)

NEMO 4 PSyclone-accelerated for GPUs

CPU:

Intel Xeon W-2133

GPU:

NVIDIA V100

Blue: original source

Orange: manual opt

Transformation:
~200 LOCs

Original science code

60K LOC diff

4K added directives

loop

parallelism

resolve imports

dependency analysis

atomics
code

restructuring

PSyclone for code transformation

▪Provide performance portability to existing science code,
incremental development.

▪Successful at porting data-parallel, loop-centric code that
already has MPI to GPUs.

▪Performance portability can be fragile to code changes
(DSL improves on this but not the subject of ExCALIBUR)

2. OpenMP Tasking in PSyclone

Excalibur Cross-Cutting Theme on Tasking

OpenMP tasking in PSyclone

▪ Goal: Can PSyclone add tasking into the generated code.
▪ Primarily focused on the code transformation frontend in this project

▪ Strategy: Split loops into chunks, parallelise inner loop with tasks and
dependencies.
Do i = 1, N, 32

 !$omp task depend(.......)

 do j = i, i + 32, 1

▪ Challenges:
▪ Dependency analysis to generate the depend clause(s).

▪ Analysis of generated clauses to ensure correctness (a(1:32) and a(2:31)
are not dependent in OpenMP 5.1 spec).

NemoLite2D Benchmark breakdown

NemoLite2D Benchmark Results - zoom
Concurrency

between loops

Serial loop due

to fake

dependency.

Prevented by

boundary
condition -

PSyclone can’t

know.

OpenMP Tasking Conclusions

▪ PSyclone is now capable of adding OpenMP tasking with
dependencies into some code paths.
▪ Full support for LFRic was too complex for this project’s timeline.

▪ Performance can be competitive with traditional OpenMP looping
code.
▪ To be worthwhile, need a case with dependent loops with load imbalance,

e.g. a lot of boundary condition sections.

▪ Some of the developments and improvements will benefit all future
PSyclone development:
▪ PSyclone may use a similar but simpler dependency analysis approach to

launch target regions with nowait and add appropriate taskwait barriers into
the code to increase GPU utilisation.

3. [PSyclone and xDSL]

Excalibur Cross-Cutting Theme on DSLs

Multi-Level Intermediate Representation

▪ Open-source compiler
infrastructure, originally
developed by Google

▪ “multi-level”: able to define
multiple dialects and
progressively convert towards
machine code. This allows
MLIR to retain information at a
higher level of abstraction,
which enables more accurate
analyses and transformations.

PSyIR

PSyclone & xDSL

Fortran

Backend

PSyIR

Transformations

PSyIR

Frontend

OpenCL

Backend

LFRic

Frontend

GOcean

Frontend SIR

Backend

xDSL

Backend

SIR

+

● PSyclone is a Fortran source-to-source compiler that can be used with

existing science code and to write DSLs.

● Provides separation of concerns and a tool for HPC experts.

● Support for

● OpenMP threading, tasking and offload

● OpenACC offload

● Generic code transformations (inlining, hoisting, intrinsic replacement)

● Used with production/full configurations:

○ LFRic (multi-node parallelism for UK Met Office’s atmospheric model)

○ NEMO (integrated in the build system and GPU demonstrator)

● Ongoing work on generalising the code-transformation approach and

improving GPU offloading capabilities, especially within NG-Arch.

Takeaways

STFC Hartree Centre@HartreeCentrehartree.stfc.ac.uk hartree@stfc.ac.uk

sergi.siso@stfc.ac.uk

andrew.porter@stfc.ac.uk

aidan.chalk@stfc.ac.uk

mailto:sergi.siso@stfc.ac.uk
mailto:andrew.porter@stfc.ac.uk
mailto:aidan.chalk@stfc.ac.uk

	Default Section
	Slide 1
	Slide 2
	Slide 3: 1. Motivation
	Slide 4: HPC is heterogeneous (and diverse)
	Slide 5: Many HPC applications still use Fortran
	Slide 6: Collaborative development
	Slide 7: Fortran
	Slide 8: Fortran vs heterogeneous Fortran
	Slide 9: Is metaprogramming a solution?
	Slide 10
	Slide 11: 2. PSyclone for Marine Systems Models

	Untitled Section
	Slide 12: NEMO Ocean Model
	Slide 13: Fortran with PSyclone: NEMO loop example
	Slide 14
	Slide 15: PSyclone for code transformation
	Slide 16: 2. OpenMP Tasking in PSyclone
	Slide 17: OpenMP tasking in PSyclone
	Slide 18: NemoLite2D Benchmark breakdown
	Slide 19: NemoLite2D Benchmark Results - zoom
	Slide 20: OpenMP Tasking Conclusions
	Slide 21: 3. [PSyclone and xDSL]
	Slide 22: Multi-Level Intermediate Representation
	Slide 23
	Slide 24
	Slide 25

