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1. Motivation



HPC is heterogeneous (and diverse)

# Name Processor
Linpack 

PFlop/s

1 Frontier AMD EPYC Milan 64c

AMD Instinct MI250X

1,207

2 Aurora Intel Xeon Max 9470 52c

Intel Data Center GPU Max

1,012

3 Eagle Intel Xeon Platinum 8480C 48c 

Nvidia H100

846

4 Fugaku Fujitsu A64FX 48c 442

5 Lumi AMD EPYC Milan 64c

AMD Instinct MI250X

379

6 Alps Nvidia Grace 72c

Nvidia GH200

270

7 Leonardo Intel Xeon Platinum 8358 32c

Nvidia A100 SMX4

241

Top 500 June ‘24 list



Many HPC applications still use Fortran

Source: https://cpufun.substack.com/p/is-fortran-a-dead-language - Jim Cownie

https://www.archer2.ac.uk/support-access/status.html#:~:text=0.0-,Historical%20usage%20data,-Period

https://cpufun.substack.com/p/is-fortran-a-dead-language
https://www.archer2.ac.uk/support-access/status.html


Collaborative development

▪ Some applications have many contributors from multiple institutions:

▪ Run on different systems in each institution. Hard to maintain multiple 
implementations. It must be portable.

▪ Contributors from different areas of expertise. Productivity, readability, 
maintainability are essential for the sustainability of the project.

▪ Millions LOCs of FORTRAN (validated long-standing code).

▪ Rewriting existing applications in a GPU-centric programming model is a 
challenging proposition.



Fortran

A = B + maxval(C(:,3:8))

• High-level array notation

• Array intrinsics

• Slices 

• Pure, Elemental

• Where, Masks

• Non-aliasing semantics

Expressive syntax

Good for optimising 

compilers



Fortran vs heterogeneous Fortran

A = B + maxval(C(:,3:8))
!$omp map data(from: B, C)

tmp = -huge(C)

!$omp target

!$omp loop collapse(2) reduction(tmp:max)

do i=1, N

    do j=3, 8

        tmp = max(tmp, C(i, j))

    end do

end do

!$omp end loop

!$omp loop collapse(2)

do i=1, N

    do j=1, M

        A(i,j) = B(i,j) + tmp

     end do

end do

!$omp end loop

!$omp end target

!$omp map data (to: A)

• Loses terse notation

• Harder to maintain, changing a 

line easily breaks directives



Is metaprogramming a solution?

▪ Start from a single-source science description in Fortran

▪ At build time generate the required specialised syntax to 
target a particular platform / programming model / set of 
parameters.



PSyIR
Fortran

Code

Fortran

Backend

Transforms

PSyIR

Transformations

Fortran

Code

Scientific domain

knowledge

Parallelisation and optimisation

encoded as transformation 

‘recipes’. 

Separation of 

concerns

Visible “readable” output

Standard 

debugging/profiling

Standard output composable

w. other tools and vendor 

compilers

Perf portability: diff. 

recipes for each 

architectures

PSyclone (BSD 3-clause) 

https://github.com/stfc/PSyclone

https://github.com/stfc/PSyclone


2. PSyclone for Marine Systems Models

Excalibur Marine Systems (‘nemo’) Design



NEMO Ocean Model

▪ Nucleus for European Modelling of the Ocean (https://www.nemo-ocean.eu/)

▪ Written in Fortran (120 kLOCs) with MPI

▪ NEMO is intended to be a flexible tool for studying the ocean and its interactions 
with the other components of the earth climate system (atmosphere, sea-ice, 
biogeochemical tracers) over a wide range of space and time scales.

▪ The NEMO Consortium comprises five European institutes:

https://www.nemo-ocean.eu/


Fortran with PSyclone: NEMO loop example

Can also contain domain 

specific logic and whole 

program optimisation!
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PSyclone for code transformation

▪Provide performance portability to existing science code, 
incremental development.

▪Successful at porting data-parallel, loop-centric code that 
already has MPI to GPUs.

▪Performance portability can be fragile to code changes
(DSL improves on this but not the subject of ExCALIBUR)



2. OpenMP Tasking in PSyclone

Excalibur Cross-Cutting Theme on Tasking



OpenMP tasking in PSyclone

▪ Goal: Can PSyclone add tasking into the generated code.
▪ Primarily focused on the code transformation frontend in this project

▪ Strategy: Split loops into chunks, parallelise inner loop with tasks and 
dependencies.
Do i = 1, N, 32

    !$omp task depend(.......)

      do j = i, i + 32, 1

▪ Challenges:
▪ Dependency analysis to generate the depend clause(s).

▪ Analysis of generated clauses to ensure correctness ( a(1:32) and a(2:31) 
are not dependent in OpenMP 5.1 spec).



NemoLite2D Benchmark breakdown



NemoLite2D Benchmark Results - zoom
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OpenMP Tasking Conclusions

▪ PSyclone is now capable of adding OpenMP tasking with 
dependencies into some code paths.
▪ Full support for LFRic was too complex for this project’s timeline.

▪ Performance can be competitive with traditional OpenMP looping 
code.
▪ To be worthwhile, need a case with dependent loops with load imbalance, 

e.g. a lot of boundary condition sections.

▪ Some of the developments and improvements will benefit all future 
PSyclone development:
▪ PSyclone may use a similar but simpler dependency analysis approach to 

launch target regions with nowait and add appropriate taskwait barriers into 
the code to increase GPU utilisation.



3. [PSyclone and xDSL]

Excalibur Cross-Cutting Theme on DSLs



Multi-Level Intermediate Representation

▪ Open-source compiler 
infrastructure, originally 
developed by Google

▪ “multi-level”: able to define 
multiple dialects and 
progressively convert towards 
machine code. This allows 
MLIR to retain information at a 
higher level of abstraction, 
which enables more accurate 
analyses and transformations.
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● PSyclone is a Fortran source-to-source compiler that can be used with 

existing science code and to write DSLs.

● Provides separation of concerns and a tool for HPC experts.

● Support for

● OpenMP threading, tasking and offload

● OpenACC offload

● Generic code transformations (inlining, hoisting, intrinsic replacement)

● Used with production/full configurations:

○ LFRic (multi-node parallelism for UK Met Office’s atmospheric model)

○ NEMO (integrated in the build system and GPU demonstrator)

● Ongoing work on generalising the code-transformation approach and 

improving GPU offloading capabilities, especially within NG-Arch.

Takeaways
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