Viv Kendon, Rhonda Au Yeung and Steve Lind, with colleague A. Williams have published a paper in Computer Physics Communications entitled “Quantum algorithm for smoothed particle hydrodynamics”.
We present a quantum computing algorithm for the smoothed particle hydrodynamics (SPH) method. We use a normalization procedure to encode the SPH operators and domain discretization in a quantum register. We then perform the SPH summation via an inner product of quantum registers. Using a one-dimensional function, we test the approach in a classical sense for the kernel sum and first and second derivatives of a one-dimensional function, using both the Gaussian and Wendland kernel functions, and compare various register sizes against analytical results. Error convergence is exponentially fast in the number of qubits. We extend the method to solve the one-dimensional advection and diffusion partial differential equations, which are commonly encountered in fluids simulations. This work provides a foundation for a more general SPH algorithm, eventually leading to highly efficient simulations of complex engineering problems on gate-based quantum computers.
This paper is a proof of concept that uses quantum algorithms to potentially enhance and accelerate the simulations of fluids. It marks an important first step towards accurately simulating larger, complex systems using quantum methods, for example air flow over airplanes, coastal engineering and climate forecasting. The full article can be read here https://www.sciencedirect.com/science/article/pii/S0010465523002540